Noisy Diffie-Hellman protocols or code-based key exchanged and encryption without masking

Carlos Aguilar¹, **Philippe Gaborit**¹, Patrick Lacharme¹, Julien Schrek¹ and Gilles Zémor²

1 University of Limoges, France,

2 University of Bordeaux, France.

Carlos Aguilar, Philippe Gaborit, Patrick Lacharme, Julien Schre Noisy Diffie-Hellman protocols or code-based key exchanged and

Classical Diffie-Hellman and Noisy DH

• Classical DH protocol : $g^a, g^b \rightarrow g^{ab}$ Alice and Bob share the same secret.

• Noisy Diffie-Hellman protocols

1. Alice and Bob obtained a noisy shared secret (a correlated sequence of bits)

2. Alice and Bob communicate to obtain a common secret from the noisy shared sequence

Suppose $A = F_2[x]/(x^n - 1)$ a commutative ring embedded with Hamming distance.

h: a random element of A

Alice chooses *a* and α elements of *A* with small norm : $O(\sqrt{n})$ Bob chooses *b* and β elements of *A* with small norm $O(\sqrt{n})$ **Alice sends** \rightarrow **Bob** : $\sigma(a, \alpha) = ah + \alpha$ **Bob sends** \rightarrow **Alice** : $\sigma(b, \beta) = bh + \beta$ From $\sigma(b, \beta)$ Alice computes $a\sigma(b, \beta) = abh + a\beta$ From $\sigma(a, \alpha)$ Bob computes $b\sigma(a, \alpha) = abh + b\alpha$ \rightarrow these two quantities differ by $a\beta - b\alpha$ of small norm.

(本語) (本語) (本語) (二語)

Alice and Bob agree on a **publicly known code C** with matrix G, Alice sends to Bob a noisy message $mG + abh + a\beta$ that Bob can decode in *m*.

- \rightarrow New code-based system based on random circulant matrices
- \rightarrow Moderate key size : 6000b
- \rightarrow Very fast 2¹⁷ operations
- \rightarrow NO MASKING and Security reduction to DH-like problem for decoding of random DC codes