Formalizing Known-Key "Distinguishers" - New Attacks on Feistel Ciphers

Yu Sasaki and Kan Yasuda NTT Corporation

Yu Sasaki and Kan Yasuda NTT Corporation

(3-bit) Block Cipher

(3-bit) Block Cipher

Choose a key. Permutation is fixed.

Attacker's Goal on Block Ciphers

Attack Models (Classic)

Attack Models (Classic)

Attack Models (Adaptively Chosen)

Attack Models (Adaptively Chosen)

🕐 NTT

• More and more complicated attack models are considered to recover the key.

 More and more complicated attack models are considered to recover the key.

• Another simple attack model:

Known-Key Attack

The concept was proposed by Knudsen and Rijmen at Asiacrypt 2007.

The attacker can do everything !!

The attacker can do everything !!

Undesired Situation

secure? if the fixed permutation is identity map

🕐 NTT

Undesired Situation

secure? if the fixed permutation has strong bias

Undesired Situation

secure? if the fixed permutation has strong bias

Known-Key Attacks

Goal is different. No secret any more!!

- Evaluate whether or not the fixed permutation with a randomly chosen key is ideal.
- Useful because block ciphers are often used as key-less primitives such as hash functions.

Our Recent Results

Our Results 1

- Give a formalization of known-key attacks which can cover all previous results.
- Show the separation of known-key and secret-key settings.

Our Results 2

• Known-key attacks up to 11-rounds of *Feistel-SP*

• 11 rounds are not ideal.

Conclusions

• Known-key distinguishers are useful tools to evaluate the security of key-less primitives.

- Our recent work
 - Formalization
 - Separation of secret/known key settings
 - Attacks on 11-rounds of Feistel-SP

Thank you for your attention !!

