

How old and known are the Edwards curves

Edouard Cu(r)velier Alphonse Magnus *Jean-Jacques Quisquater*

UCLouvain – Louvain-la-Neuve - Belgium

The project

- Master thesis: is it possible to teach Edwards curves before general elliptic curves?
- Including the history of such curves.
- Surprise!

Faculté des Sciences

Courbes Elliptiques d'Edwards.

Cuvelier Édouard

Année académique 2009-2010

Promoteur : Professeur Jean-Jacques Quisquater Lecteurs : Professeur François Koeune Professeur Alphonse Magnus

Mémoire présenté en vue de l'obtention du master en sciences mathématiques par **Édouard Cuvelier**.

Edwards (AMS-2007)

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 44, Number 3, July 2007, Pages 393-422 S 0273-0979(07)01153-6 Article electronically published on April 9, 2007

A NORMAL FORM FOR ELLIPTIC CURVES

HAROLD M. EDWARDS

ABSTRACT. The normal form $x^2+y^2 = a^2+a^2x^2y^2$ for elliptic curves simplifies formulas in the theory of elliptic curves and functions. Its principal advantage is that it allows the *addition law*, the group law on the elliptic curve, to be stated explicitly

$$X = \frac{1}{a} \cdot \frac{xy' + x'y}{1 + xyx'y'}, \quad Y = \frac{1}{a} \cdot \frac{yy' - xx'}{1 - xyx'y'}$$

The *j*-invariant of an elliptic curve determines 24 values of *a* for which the curve is equivalent to $x^2 + y^2 = a^2 + a^2 x^2 y^2$, namely, the roots of $(x^8 + 14x^4 + 1)^3 - \frac{i}{16}(x^5 - x)^4$. The symmetry in *x* and *y* implies that the two transcendental functions x(t) and y(t) that parameterize $x^2 + y^2 = a^2 + a^2 x^2 y^2$ in a natural way are essentially the same function, just as the parameterizing functions sin *t* and cos *t* of the circle are essentially the same function. Such a parameterizing function is given explicitly by a quotient of two simple theta series depending on a parameter *t* in the upper half plane.

A NORMAL FORM FOR ELLIPTIC CURVES

2. The addition formula for $x^2 + y^2 + x^2y^2 = 1$

Euler's very first paper [5] on the theory of elliptic functions contains formulas that strongly suggest¹ an explicit "addition formula" in the special case of the elliptic curve $x^2 + y^2 + x^2y^2 = 1$. This curve, which becomes $z^2 = 1 - x^4$ when one sets $z = y(1 + x^2)$, was of great interest to Gauss; the last entry of his famous *Tagebuch* relates to it, as does his reference to "the transcendental functions which depend on the integral $\int \frac{dx}{\sqrt{1-x^4}}$ " in Article 335 of the *Disquisitiones Arithmeticae*. In notes published posthumously in his *Werke* [6], Gauss stated explicitly the formulas Euler had hinted at decades earlier, putting them in the form

2.1)
$$S = \frac{sc' + s'c}{1 - ss'cc'}, \qquad C = \frac{cc' - ss'}{1 + ss'cc'}.$$

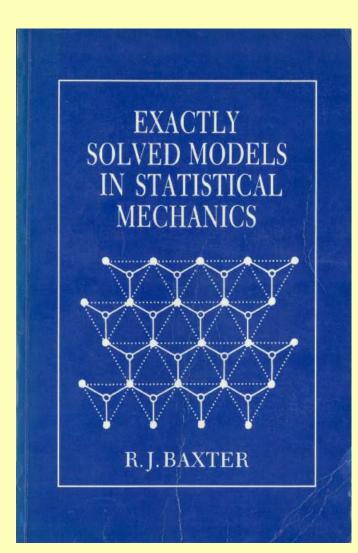
Gauss's choice of the letters s and c brings out the analogy with the addition laws for sines and cosines. (The numerators *are* the addition laws for sines and cosines.) He in fact defines two transcendental functions s(t) and c(t) with the property that (2.1) expresses (S, C) = (s(t + t'), c(t + t')) in terms of (s, c) = (s(t), c(t)) and (s', c') = (s(t'), c(t')). The definition of s(t) takes the implicit form $t = \int_0^{s(t)} \frac{dx}{\sqrt{1-x^2}}$ analogous to $t = \int_0^{\sin t} \frac{dx}{\sqrt{1-x^2}}$, while $c(t) = \sqrt{\frac{1-s(t)^2}{1+s(t)^2}}$ (with c(0) = 1) is analogous to $cos t = \sqrt{1-\sin^2 t}$ (with cos 0 = 1).

These remarkable Euler-Gauss formulas apply only to the specific curve $s^2 + c^2 + s^2c^2 = 1$, but they are a special case of a formula that describes the group law of an arbitrary elliptic curve.

Giulio Carlo Fagnano (1751)

	Web Images Maps Actualités Livres Traduction Gmail plus V						
	Google livres	fagnano elliptic cur	ves	Chercher des livres Recherche Avancée de Livres			
	Q Q 🖸 🔀 <u>Table</u>	<u>des matières</u> ×				⊛ <u>Lien</u> [[] [[] Commentaires]	
	Résultat 1 sur 1 dans ce livre pour fagnano elliptic curves			Effacer la recherche			
			request of Catheri	request of Catherine the Great.) Fagnano sent his Produzioni		_	
			mathematiche to th	e Berlin Academy. On Dec			
			results were put i	nto Euler's expert hands			
			(Much later, in th	e 19'th century, Jacobi d	lescribed this day		
			as the "birthday"	of the theory of <mark>elliptic</mark>	functions [25,		
			p. 183].) In the	1756/7 number of Novi com	mentarii academiae		
			scientiarum Petrop	olitanae [22, vol.XX, pp.	58-79], Euler con-		
			sidered the differ	ential equation			
			(1) $\frac{dx}{(1-x^4)^{\frac{1}{2}}} = \frac{d}{(1-x^4)^{\frac{1}{2}}}$	$\frac{y}{y^4}$,			
RODIT	ANT .		asserting that its	solution is			
MATEMATIC	eve - HE		(2) $x^2 + y^2 + (cx)$	$(y)^2 = c^2 + 2xy(1 - c^4)^{\frac{1}{2}}$.			
del contre giulió (CARLO		Euler gives essent	ially the following demon	stration [22, vol.XX,		
DI FAGNANO» MAINTING ING' ING'	C3807.		p. 63]: Different	iating (2) gives			
IL DI SANT' ONOR	лØ		$(3) xdx + ydy + c^2x$	y(xdy + ydx) = (xdy + ydx)	$1 - c^4)^{\frac{1}{2}}$.		
CHILE MONAND, E PATRIZIO 2024 ALLA CANTERA DI	organgeldente Na de		Collecting like te	rms gives			
ENEDEITO	XIV.		(4) $(x + c^2 x y^2 - y)$	$(1 - c^4)^{\frac{1}{2}} dx + (y + c^2 x^2 y - x)$	$1 - c^4$) ^{1/2}) dy = 0.		
PONTEFICE MASSI	MÒ_		Solving (2) for y	and x, by the quadrat	ic formula, gives		
TOHO SECONDO.	Ē.		(5) $y = \frac{x(1-c^4)^{\frac{1}{2}} \pm c}{1+c^2 x}$	$\frac{(1-x^4)^{\frac{1}{2}}}{2}$, and $x = \frac{y(1-c^4)}{1+c^4}$	$\frac{\frac{1}{2} \pm c (1-y^2)^{\frac{1}{2}}}{c^2 y^2}$		
IN PESARO							
CON LIGRNZA DA CUPER	на 1081.						

Baxter, 1982, Academic Press



15.10 PARAMETRIZATION OF SYMMETRIC BIOUADRATIC RELATIONS 471

15,10 Parametrization of Symmetric Biquadratic Relations

In the Ising, eight-vertex and hard hexagon models we encounter symmetric biquadratic relations, of the form

 $ax^{2}y^{2} + b(x^{2}y + xy^{2}) + v(x^{2} + y^{2}) - 2dxy + e(x - y) + f = 0.$ (15.10.1)

Here x and y are variables (complex numbers), and a, b, c, d, e, f are given constants.

Any such relation can conveniently he parametrized in terms of elliptic functions. To see this, first apply the bilinear transformations

 $x \mapsto (\alpha x + \beta)/(\gamma x + \delta), \quad y \mapsto (\alpha y \doteq \beta)/(\gamma y + \delta), \qquad (15.10.2)$

where $\alpha_i \beta_i \gamma_i \delta$ are numbers (in general complex) such that $\alpha \delta \neq \beta \gamma_i$. In general we can choose α , β , γ , δ so as to make b and e vanish in (15.10.1), and so that $u = f \neq 0$. (Exceptional cases can arise, but these can be handled by taking an appropriate limit.) Dividing (15,10.1) through by a, the biquadratic telation assumes the canonical form

$$x^{2}v^{2} + 1 + c(x' + v') + 2dxy = 0.$$
(15.10.3)

This can be regarded as a quadratic equation for y. Its solution is

 $\mathbf{y} = -\left\{ dx \pm \sqrt{1 - c^{-1}} \left(d^2 - 1 - c^2 \right) x^2 - c x^4 \right\} \left\{ (c + x^2) := (15.10.4) \right\}$

The argument of the square root is a quartic polynomial in x. It can be written as a perfect square by transforming from the variable x to the variable µ, where

$$x = b^{\dagger} \sin \mu$$
, (15.10-5)

sn a being the Jacobian elliptic sn function of argument κ and modulus k_{τ} where

$$k + k^{-1} - (a^2 - 1 - c^2)/c, \qquad (15.10.6)$$

Using (15.4.4) and (15.4.5), the argument of the square root is

$$c[1 - (k + k^{-1})x^{-} + x^{4}]$$

$$= -c(1 - \sin^2 u) (1 - k^2 \sin^2 u) - \cdots c \sin^2 u \, dn^2 u \,. \qquad (15.10.7)$$

Define a parameter η by

 $c = -1/(k \sin^2 n)$. (15.10.8)

Then from (15.10.6) it follows that we can choose the sign of η so that

(15.10.9) $d = \operatorname{cn} \eta \operatorname{dn} \eta / (k \operatorname{sn}^2 \eta) .$

Lessons

1) Read what you cite ©

2) Read papers and books from other fields