Fixing non-randomness in the PGVs

Praveen Gauravaram, Nasour Bagheri* and Lars R.Knudsen

DTU, Denmark and IUST, Iran* $\,$

17th August 2010

Single block length compression functions

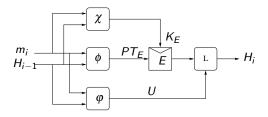


Figure: General form of a *n*-to-*n* bit PGV compression function

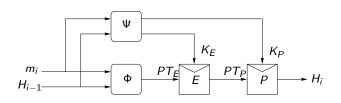
- **1** χ , ϕ and φ define linear combinations of m_i and H_{i-1} .
 - $K_E, PT_E, U \in \{m_i, H_{i-1}, m_i \oplus H_{i-1}, v\}$
- Preneel, Govaerts and Vandewalle (PGV) showed 12 out of 64 possible designs are collision and (second) preimage resistant.
- 3 Black, Rogaway and Shrimpton confirmed this result in the ideal-cipher model.

Non-randomness in PGVs

For each f^i , it is possible to find a pair (H_{i-1}, m_i) which makes f^i non-ideal even if E is ideal.

Compression function (f^i)	Property
$i \in \{5, 8, 10, 11\}$	$f^i(H_{i-1},m_i)=H_{i-1}$ (fixed points)
$i \in \{2,3,6,7\}$	$f^i(H_{i-1},m_i)=H_{i-1}\oplus m_i$
$i \in \{1,4,9,12\}$	$f^i(H_{i-1},m_i)=m_i$

General form of a 2*n*-to-*n*-bit Modified PGV compression function



- **1** Ψ and Φ define linear combinations of m_i and H_{i-1} :
- ② $K_E, K_P, PT_E \in \{m_i, H_{i-1}, m_i \oplus H_{i-1}, v\}$
- 3 Sixty-four MPGVs can be derived from it.

Results

- Two ideal and independent block ciphers are sufficient to design indifferentiable compression functions. 24/64 MPGVs are indifferentiable.
 - The modified versions of 12 collision resistant PGVs are indifferentiable up to the birthday bound.
 - Some surprises.
- 2 Interesting applications.

Thank you!!!!