Subspace LWE & Non-HB Style Authentication from LPN

Krzysztof Pietrzak

Centrum Wiskunde & Informatica

Crypto 2010 Rump Session, Aug. 17ht

 $\mathbf{s} \in \mathbb{Z}_2^n$ $0 < \tau < 0.5$

□ > 《 E > 《 E >

3

 $\mathbf{s} \in \mathbb{Z}_2^n$ $0 < \tau < 0.5$

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

3

Definition (Learning Parities with Noise)

 (n, τ) -LPN Problem: distinguish oracle from random.

- Equivalent to decoding of random linear codes.
- Generalization: "Learning with Errors" (LWE) [Regev'05].

🗇 🕨 🖌 🖻 🕨 🖌 🗐 🕨

The HB authentication protocol [Hopper and Blum AC'01]

The HB authentication protocol [Hopper and Blum AC'01]

- Secure against passive attacks.
- Correctness error τ . Soundness error 0.5 + negl.
- Can be amplified by parallel repetition.
- Not secure against active attacks.

The HB⁺ protocol [Jules and Weis Crypto'05]

- Secure against active attacks.
- Can be amplified by parallel repetition [KatzShin'06].
- Security Reduction loose:

```
LPN \epsilon-hard \Rightarrow protocol \sqrt{\epsilon}-secure.
```

• 3-Rounds :(

http://www.ecrypt.eu.org/lightweight/index.php/HB	
	Nicholas J. Hopper, Manuel Blum: Secure Human Identification Protocols. ASIACRYPT 2001
2	Ari Juels, Stephen A. Weis: Authenticating Pervasive Devices with Human Protocols. CRYPTO 2005
3	Jonathan Katz, Ji Sun Shin: Parallel and Concurrent Security of the HB and HB+ Protocols. EUROCRYPT 2006
(4)	Éric Levieil, Pierre-Alain Fouque: An Improved LPN Algorithm. SCN 2006
5	Henri Gilbert, Matt Robshaw, Herve Sibert: An Active Attack Against HB+ - A Provably Secure Lightweight Authentication Protocol. Cryptology ePrint Archive.
6	Jonathan Katz, Adam Smith: Analyzing the HB and HB+ Protocols in the Large Error Case. Cryptology ePrint Archive.
7	Julien Bringer, Hervé Chabanne, Emmanuelle Dottax: HB++: a Lightweight Authentication Protocol Secure against Some Attacks. SecPerU 2006
8	Jonathan Katz: Efficient Cryptographic Protocols Based on the Hardness of Learning Parity with Noise. IMA Int. Conf. 2007
9	Jorge Munilla, Alberto Peinado: HB-MP: A further step in the HB-family of lightweight authentication protocols. Computer Networks 51(9): 2262-2267 (2007)
0	Dang Nguyen Duc, Kwangjo Kim: Securing $HB+$ against GRS Man-in-the-Middle Attack. Proc. Of SCIS 2007, Abstracts pp.123, Jan. 23-26, 2007, Sasebo, Japan.
0	Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin: HB#: Increasing the Security and Efficiency of HB+. EUROCRYPT 2008
12	Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin: Good Variants of HB+ Are Hard to Find. Financial Cryptography 2008
B	Henri Gilbert, Matthew J. B. Robshaw, Yannick Seurin: How to Encrypt with the LPN Problem. ICALP (2) 2008
14	Julien Bringer, Herv Chabanne: Trusted-HB: A Low-Cost Version of HB+ Secure Against Man-in-the-Middle Attacks. IEEE Transactions on Information Theory 54(9): 4339-4342 (2008).
15	Khaled Ouafi, Raphael Overbeck, Serge Vaudenay: On the Security of HB $\#$ against a Man-in-the-Middle Attack. ASIACRYPT 2008
16	Zbigniew Golebiewski, Krzysztof Majcher, Filip Zagorski, Marcin Zawada: Practical Attacks on HB and HB+ Protocols. Cryptology ePrint Archive.
0	Xuefei Leng, Keith Mayes, Konstantinos Markantonakis: HB-MP+ Protocol: An Improvement on the HB-MP Protocol. IEEE International Conference on RFID, 2008 April 2008.
	Dmitry Frumkin, Adi Shamir: Un-Trusted-HB: Security Vulnerabilities of Trusted-HB. Cryptology ePrint
-	Archive.

A New Protocol

- Secure against active attacks.
- Can be amplified by parallel repetition.¹
- Security Reduction tight:

LPN ϵ -hard \Rightarrow protocol $\epsilon - 2^{-\Theta(\#rep)}$ -secure.

round-optimal

¹same \mathbf{v} , linearly independent \mathbf{b} 's.

Subspace LWE/LPN an adaptive version LWE/LPN

NGC 6543 by Hubble

 $\mathbf{s} \in \mathbb{Z}_2^m$ 0 < au < 0.5 $n \le m$

Krzysztof Pietrzak Subspace LWE & Non-HB Style Authentication from LPN

- (B) (B

 $\mathbf{s} \in \mathbb{Z}_2^m$ $0 < \tau < 0.5$ $n \le m$

 $\phi_1, \phi_2 : \mathbb{Z}_a^m \to \mathbb{Z}_a^m$ affine & overlap in n-dim subspace.

$$\phi_r(\mathbf{r}) \stackrel{\text{def}}{=} \mathbf{X}_r \cdot \mathbf{r} + \mathbf{x}_r \quad \phi_s(\mathbf{s}) \stackrel{\text{def}}{=} \mathbf{X}_s \cdot \mathbf{s} + \mathbf{x}_s \quad \text{rank}(\mathbf{X}_r^T \cdot \mathbf{X}_s) \ge n$$

伺 と く ヨ と く ヨ と

$$\mathbf{s} \in \mathbb{Z}_2^m$$
 $0 < \tau < 0.5$ $n \le m$

$$\mathbf{r} \leftarrow \mathbb{Z}_2^m \quad \mathbf{e} \leftarrow \mathsf{Ber}_{\tau}$$

 $\phi_1, \phi_2 : \mathbb{Z}_q^m \to \mathbb{Z}_q^m$ affine & overlap in n-dim subspace.

$$\phi_r(\mathbf{r}) \stackrel{\text{def}}{=} \mathbf{X}_r \cdot \mathbf{r} + \mathbf{x}_r \quad \phi_s(\mathbf{s}) \stackrel{\text{def}}{=} \mathbf{X}_s \cdot \mathbf{s} + \mathbf{x}_s \quad \text{rank}(\mathbf{X}_r^T \cdot \mathbf{X}_s) \ge n$$

回 と く ヨ と く ヨ と

$$\mathbf{s} \in \mathbb{Z}_2^m$$
 $0 < \tau < 0.5$ $n \le m$

$$\mathbf{r} \leftarrow \mathbb{Z}_2^m \quad \mathbf{e} \leftarrow \mathsf{Ber}_{\tau}$$

 $\phi_1, \phi_2 : \mathbb{Z}_q^m \to \mathbb{Z}_q^m$ affine & overlap in n-dim subspace.

$$\phi_r(\mathbf{r}) \stackrel{\text{def}}{=} \mathbf{X}_r \cdot \mathbf{r} + \mathbf{x}_r \quad \phi_s(\mathbf{s}) \stackrel{\text{def}}{=} \mathbf{X}_s \cdot \mathbf{s} + \mathbf{x}_s \quad \text{rank}(\mathbf{X}_r^T \cdot \mathbf{X}_s) \ge n$$

Definition (Subspace Learning Parities with Noise)

 (m, n, τ) -SLPN Problem: distinguish oracle from random.

Claim (SLPN hard \Rightarrow LPN hard (trivial))

- if (m, n, τ) -SLPN is ϵ hard
- then (n, τ) -LPN is ϵ hard.

Theorem (LPN hard \Rightarrow SLPN hard)

• if
$$(n, \tau)$$
-LPN is ϵ hard

• then $(m, n + d, \tau)$ -SLPN is $\epsilon - 2^{-d} \cdot \#$ queries hard