Coppersmith's Theorem XVII:

 Coppersmith UNLEASHED

 Coppersmith UNLEASHED}

Henry Cohn and Nadia Heninger

Which theorem gives us all these awesome things?

1. RSA key recovery
2. cryptanalysis of low-exponent stereotyped RSA
3. RSA-OAEP+
4. finding smooth integers in short intervals

Coppersmith/Howgrave-Graham

Let

- $f(x)=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0}$,
- N of unknown factorization,
- $0<\beta \leq 1$.

Theorem
Can find all x_{0} such that

$$
\begin{gathered}
\operatorname{gcd}\left(f\left(x_{0}\right), N\right)>N^{\beta} \\
\left|x_{0}\right|<N^{\beta^{2} / d}
\end{gathered}
$$

in time polynomial in $\log N$ and d.

Proof idea

1. Form lattice from coefficients of $\left\{f(x)^{i} N^{k-i}\right\}_{i=0}^{k}$.
2. Find a short vector in the lattice.
3. Factor the polynomial you found.

4. Profit?

Proof idea

1. Form lattice from coefficients of $\left\{f(x)^{i} N^{k-i}\right\}_{i=0}^{k}$.
2. Find a short ve or in t elaftice.
3. Factor the polynor ral ou found.
4. Profit?

Proof idea

10m lattice from coefficients of $\left\{f(x)^{i} N^{k-i}\right\}_{i=0}^{k}$.
2. Find short ve for in t'e la ctice.
3. Factor the polynor ial ou found.

4. Profit?

Proof idea

10m lattice from coefficients of $\left\{f(x)^{i} N^{k-i}\right\}_{i=0}^{k}$.
2. Find short ve for in the lactice.
3. Factor the polynor ial ou found.

OK

4. Profit?

Proof idea

0^{5}

71 pm lattice from coefficients of $\left\{f(x)^{i} N^{k-i}\right\}_{i=0}^{k}$.
2. Find short ve or in t'e lactice.
3. Factor the polynor ial ou found.

OK

4. Profit?

Polynomials!

Let

- $f(x, y)=y^{d}+f_{d-1}(x) y^{d-1}+\cdots+f_{0}(x)$,
- $N(x)$ of degree n,
- $0<\beta \leq 1$.

Theorem
Can find all $g(x)$ such that

$$
\begin{gathered}
\operatorname{deg}_{x} \operatorname{gcd}(f(x, g(x)), N(x)) \geq n \beta \\
\operatorname{deg}_{x} g(x) \leq n \beta^{2} / d
\end{gathered}
$$

in time polynomial in n and d.

Polynomials!

Let

- $f(x, y)=y^{d}+f_{d-1}(x) y^{d-1}+\cdots+f_{0}(x)$,
- $N(x)$ of degree n,

Reed-Solomon list decoding!
noisy polynomial interpolation!

$$
\begin{gathered}
\operatorname{deg}_{x} \operatorname{gcd}(f(x, g(x)), N(x)) \geq n \beta \\
\operatorname{deg}_{x} g(x) \leq n \beta^{2} / d
\end{gathered}
$$

in time polynomial in n and d.

Number fields!

Let K n.f. of degree n, \mathcal{O}_{K} ring of integers,

- $f(x)=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathcal{O}_{K}[x]$
- $I \subseteq \mathcal{O}_{K}$ an ideal,
- $0<\beta \leq 1$.

Theorem
Can find all x_{0} with $\left|x_{0}\right|_{i}<\lambda_{i}$ such that

$$
\begin{gathered}
N\left(\operatorname{gcd}\left(f(w) \mathcal{O}_{K}, I\right)\right)>N(I)^{\beta} \\
\prod_{i} \lambda_{i}<(2+o(1))^{-n^{2} / 2} N(I)^{\beta^{2} / d}
\end{gathered}
$$

in time polynomial in $n, \log N(I)$, and d.

Number fields!

Let K n.f. of degree n, \mathcal{O}_{K} ring of integers, - $f(x)=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathcal{O}_{K}[x]$

Solving BDD in ideal lattices!
Theorem
Can find all x_{0} with $\left|x_{0}\right|_{i}<\lambda_{i}$ such that number fields! finding smooth elements in num

$$
\prod_{i} \lambda_{i}<(2+o(1))^{-n^{2} / 2} N(I)^{\beta^{2} / d}
$$

in time polynomial in $n, \log N(I)$, and d.

Function fields!

Let K f.f., over curve \mathcal{X}, D divisor, $S \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$,

- $f(x)=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathcal{O}_{S}$,
- $I \subset \mathcal{O}_{S}$ an ideal,
- $0<\beta \leq 1$.

Theorem
Can find all $x_{0} \in(D)$ such that

$$
\begin{gathered}
N\left(\operatorname{gcd}\left(f\left(x_{0}\right) \mathcal{O}_{S}, I\right)\right) \geq N(I)^{\beta} \\
q^{\operatorname{deg}(D)}<N(I)^{\beta^{2} / d}
\end{gathered}
$$

in probabilistic polynomial time.

Function fields!

Let K f.f., over curve \mathcal{X}, D divisor, $S \subseteq \mathcal{X}\left(\mathbb{F}_{q}\right)$,

- $f(x)=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathcal{O}_{S}$,
- $I \subset \mathcal{O}_{S}$ an ideal,
list decoding of multi-point algebraic ge
$x_{0} \in(D)$ such that

$$
\begin{gathered}
N\left(\operatorname{gcd}\left(f\left(x_{0}\right) \mathcal{O}_{S}, I\right)\right) \geq N(I)^{\beta} \\
q^{\operatorname{deg}(D)}<N(I)^{\beta^{2} / d}
\end{gathered}
$$

in probabilistic polynomial time.

Ideal forms of Coppersmith's theorem and Guruswami-Sudan list decoding

http://arxiv.org/abs/1008.1284

